Suites arithméticogéométriques

Jai20enMaths

Rappels de 1ère : Les suites arithmétiques

1 Relation de récurrence

Définition 1.1

Une suite (u_n) est une suite arithmétique s'il existe un réel r tel que pour tout entier naturel n, on a :

 $u_{n+1} = u_n + r$ où r est la raison de la suite arithmétique.

Chaque terme d'une suite arithmétique se déduit donc du précèdent en lui rajoutant la raison \boldsymbol{r} .

Expression du terme général en fonction de n

Définition 1.2

Soit (u_n) une suite arithmétique. L'expression de u_n en fonction de n est :

 $u_n = u_0 + n \times r$: lorsque le premier terme vaut u_0 .

 $u_n = u_1 + (n-1) \times r$: lorsque le premier terme vaut u_1 .

 $u_n = u_p + (n-p) \times r$: formule avec un premier terme u_p quelconque.

3 Somme de termes d'une suite arithmétique

Définition 1.3

Soit n un entier naturel.

La somme des termes d'une suite arithmétique est donnée par la formule suivante :

$$u_0 + u_1 + \ldots + u_n = \text{(nombres de termes)} \times \left(\frac{\text{premier terme} + \text{dernier terme}}{2}\right)$$

Younss Messoudi @Jai20enMaths

Rappels de 1ère : Les suites géométriques

Relation de récurrence

Définition 1.4

Une suite (u_n) est une suite géométrique s'il existe un réel q tel que pour tout entier naturel n, on a :

 $u_{n+1} = u_n \times q$ où q est la raison de la suite géométrique.

Chaque terme d'une suite géométrique se déduit donc du précèdent en le multipliant par la raison q.

Expression du terme général en fonction de n

Définition 1.5 Soit (u_n) une suite géométrique. L'expression de u_n en fonction de n est : $u_n = u_0 \times q^n$: lorsque le premier terme vaut u_0 $u_n = u_1 \times q^{n-1}$: lorsque le premier terme vaut u_1 $u_n = u_p \times q^{n-p}$: formule avec un premier terme u_p quelconque.

Somme de termes d'une suite géométrique

Définition 1.6 Soit n un entier naturel.

La somme des termes d'une suite géométrique est donnée par la formule suivante :
$$u_0 + u_1 + \ldots + u_n = (\text{premier terme}) \times \left(\frac{1 - q^{\text{nombres de termes}}}{1 - q}\right)$$

Suites arithmético-géométriques

Définition 1.7

- Soit n un entier naturel.
- Soient a et b deux réels.
- (u_n) est une suite arithmético-géométrique si elle est définie par un premier terme
- et la relation de récurrence $u_{n+1} = au_n + b$.

Exemple

Soit la suite (u_n) définie par $u_0 = 10$ et pour tout $n \in \mathbb{N}$ par : $u_{n+1} = \frac{1}{3}u_n + 2$

Démontrer que la suite (v_n) définie pour tout entier naturel n par $v_n = u_n - 3$ est géométrique.

Corrigé:

On a:

$$v_n = u_n - 3$$

$$v_{n+1} = u_{n+1} - 3 \text{ or } u_{n+1} = \frac{1}{3}u_n + 2 \text{ d'où} :$$

$$v_{n+1} = \frac{1}{3}u_n + 2 - 3$$
 ainsi $v_{n+1} = \frac{1}{3}u_n - 1$

 $v_{n+1} = \frac{1}{3}u_n + 2 - 3$ ainsi $v_{n+1} = \frac{1}{3}u_n - 1$ Nous savons que $v_n = u_n - 3$ ce qui nous permet d'écrire que $v_n + 3 = u_n$

Il vient alors que:

$$v_{n+1} = \frac{1}{3}(v_n + 3) - 1 \text{ et donc } v_{n+1} = \frac{1}{3}v_n + \frac{1}{3} \times 3 - 1$$
$$v_{n+1} = \frac{1}{3}v_n + 1 - 1 = \frac{1}{3}v_n$$

La suite (v_n) est une suite géométrique de raison $\frac{1}{3}$ et de premier terme $v_0 = u_0 - 3 = 7$.

Solution vidéo ↓

Soit
$$n$$
 est un entier naturel non nul.
Soient
$$\begin{cases} u_0 = 680 \\ u_{n+1} = 0, 9u_n + 42 \end{cases}$$
 et $v_n = u_n - 420$

- 1 Montrer que (v_n) est une suite géométrique. On précisera sa raison et son premier terme.
- **2** Exprimer v_n en fonction de n.
- 3 Exprimer u_n en fonction de n.