La Fonction exponentielle Sujets Type bac

Jai20enMaths

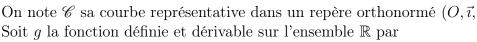
Quatre exos types pour préparer le BAC :)

Type bac : Fonction Exponentielle, Continuité et Intégrale

Solution vidéo ↓

On considère la fonction f définie et dérivable sur l'ensemble $\mathbb R$ des nombres réels par

$$f(x) = x + 1 + \frac{x}{e^x}.$$



$$g(x) = 1 - x + e^x.$$

Partie A

- 1 Dresser, en le justifiant, le tableau donnant les variations de la fonction g sur \mathbb{R} (les limites de g aux bornes de son ensemble de définition ne sont pas attendues). En déduire le signe de g(x).
- 2 Déterminer la limite de f en $-\infty$ puis la limite de f en $+\infty$.
- 3 On appelle f' la dérivée de la fonction f sur \mathbb{R} . Démontrer que, pour tout réel x,

$$f'(x) = e^{-x}g(x).$$

- 4 En déduire le tableau de variation de la fonction f sur \mathbb{R} .
- Démontrer que l'équation f(x) = 0 admet une unique solution réelle α sur \mathbb{R} . Démontrer que $-1 < \alpha < 0$.
- **6** Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe \mathscr{C} au point d'abscisse 0.
- $\red{7}$ Étudier la position relative de la courbe $\mathscr C$ et de la droite T.

Partie B

Soit H la fonction définie et dérivable sur \mathbb{R} par

$$H(x) = (-x - 1)e^{-x}$$
.

- **1** Démontrer que H est une primitive sur \mathbb{R} de la fonction h définie par $h(x) = xe^{-x}$.
- 2 On note \mathcal{D} le domaine délimité par la courbe \mathcal{C} , la droite T et les droites d'équation x=1 et x=3. Calculer, en unité d'aire, l'aire du domaine \mathscr{D} .

Type bac : Fonction Exponentielle, Continuité

Solution vidéo ↓

Partie A: Etude d'une fonction auxilaire

Soit g la fonction définie sur \mathbb{R} par

- 1 Déterminer la limite de g en $+\infty$.
- **2** Démontrer que la limite de q en $-\infty$ vaut -2.
- 3 On admet que la fonction g est dérivable sur \mathbb{R} et on note g' sa dérivée. Calculer g'(x) pour tout réel x puis dresser le tableau de variations de g.
- 4 Démontrer que l'équation g(x) = 0 admet une unique solution α sur \mathbb{R} .
- **5** En déduire le signe de la fonction g sur \mathbb{R} .
- 6 Al'aide de la calculatrice, donner un encadrement d'amplitude 10^{-3} de α .

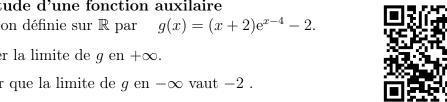
Partie B: Etude de la fonction f

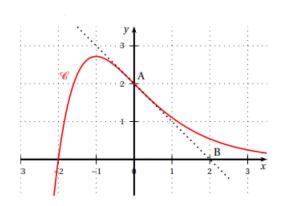
 $f(x) = x^2 - x^2 e^{x-4}.$ Soit f la fonction définie sur \mathbb{R} par

1 Résoudre l'équation f(x) = 0 sur \mathbb{R} .

On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée. On admet par ailleurs que, pour tout réel x, f'(x) = -xg(x) où la fonction g est celle définie à la partie A.

- 1 Étudier les variations de la fonction f sur \mathbb{R} .
- **2** Démontrer que le maximum de la fonction f sur $[0; +\infty[$ est égal à $\frac{\alpha^3}{\alpha+2}$.





Exercice

Type bac : Fonction Exponentielle, Convexité

On a représenté ci-dessus, dans un repère orthonormé, une portion de la courbe représentative \mathscr{C} d'une fonction f définie sur \mathbb{R} .

Partie 1 : Etude d'une fonction auxilaire

Sachant que la courbe \mathscr{C} passe par A et que la droite (AB) est la tangente à la courbe \mathscr{C} au point A, donner par lecture graphique :

Solution vidéo ↓

- **1** La valeur de f(0) et celle de f'(0).
- **2** Conjecturer la convexité de f.

Partie 2: Etude de la fonction f

On considère la fonction f définie sur \mathbb{R} par : $f(x) = (ax + b)e^{-x}$. On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée.

- 3 En utilisant l'expression de la fonction f, exprimer f(0) en fonction de b et en déduire la valeur de b.
- 4 Donner, pour tout réel x, l'expression de f'(x).
- **5** Exprimer f'(0) en fonction de a.
- 6 En utilisant les questions précédentes, déterminer a, puis en déduire l'expression de f(x).
- 7 Calculer les limites de f en $-\infty$ et en $+\infty$. Que peut-on en déduire graphiquement?
- 8 Donner, pour tout réel x, l'expression de f'(x).
- **9** Étudier le signe de f'(x) pour tout $x \in \mathbb{R}$ et dresser le tableau complet des variations de f sur \mathbb{R} .
- **10** Calculer pour tout $x \in \mathbb{R}$, f''(x).
- **11** Etudiez la convexité de f sur \mathbb{R} .

Type bac : Fonction Exponentielle, équations ; limites et convexité

Solution vidéo ↓

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier chaque réponse.

- **1** Affirmation 1 : Pour tout réel $x : 1 \frac{1 e^x}{1 + e^x} = \frac{2}{1 + e^{-x}}$.
- 2 On considère la fonction g définie sur \mathbb{R} par $g(x) = \frac{e^x}{e^x + 1}$.

Affirmation 2 : L'équation $g(x) = \frac{1}{2}$ admet une unique solution dans \mathbb{R} .

3 On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 e^{-x}$ et on note \mathscr{C} sa courbe dans un repère orthonormé.

Affirmation 3 : L'axe des abscisses est tangent à la courbe $\mathscr C$ en un seul point.

- On considère la fonction h définie sur \mathbb{R} par $h(x) = e^x (1 x^2)$. **Affirmation 4 :** Dansle plan muni d'un repère orthonormé, la courbe représentative de la fonction h n'admet pas de point d'inflexion.
- **5** Affirmation 5: $\lim_{x \to +\infty} \frac{e^x}{e^x + x} = 0.$
- **6** Affirmation 6 : Pour tout réel $x, 1 + e^{2x} \ge 2e^x$.