Calcul Intégral Sujets Type bac

Jai20enMaths

Solution vidéo ↓

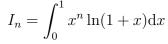
Sept exos types pour préparer le BAC :)

Exercice

Type bac : Etudier une suite définie par une intégrale Episode 1

On considère la suite (I_n) définie pour tout entier naturel n par :

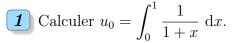
$$I_n = \int_0^1 x^n \ln(1+x) \mathrm{d}x$$



- **2** Etudier les variations de la suite (I_n) .
- 3 En déduire que la suite (I_n) est convergente.
- 4 Montrer que, pour tout entier naturel n et pour tout $x \in [0; 1], 0 \le x^n \ln(1+x) \le x^n$. On rappelle que $\ln 2 \leq 1$.
- **5** En déduire que pour tout entier naturel n on $a: 0 \leq I_n \leq \frac{1}{n+1}$.
- **6** En déduire $\lim_{n \to \infty} I_n$.

Type bac : Etudier une suite définie par une intégrale Episode 2

On définit la suite (u_n) de la façon suivante : pour tout entier naturel n, $u_n = \int_0^1 \frac{x^n}{1+x} dx$



Solution vidéo ↓

Younss Messoudi @Jai20enMaths

- **2** Démontrer que, pour tout entier naturel $n, u_{n+1} + u_n = \frac{1}{n+1}$.
- 3 En déduire la valeur exacte de u_1 .
- 4 Démontrer que la suite (u_n) est décroissante.
- **5** Démontrer que la suite (u_n) est convergente.
- **6** On appelle ℓ la limite de la suite (u_n) . Démontrer que $\ell = 0$.

Exercice

Type bac : Intégrales

Solution vidéo ↓

Le but de cet exercice est de déterminer une valeur approchée à 10^{-2} près de l'intégrale : $I = \int_0^1 \left(\frac{\mathrm{e}^{-x}}{2-x}\right) \mathrm{d}x$

- **1** Étudier les variations de la fonction $f: x \mapsto f(x) = \frac{e^{-x}}{2-x}$ sur l'intervalle [0; 1].
- 2 Montrer que, pour tout réel x de l'intervalle [0;1], on a $\frac{1}{e} \leqslant f(x) \leqslant \frac{1}{2}$.
- 3 Soient J et K les intégrales définies par $J = \int_0^1 (2+x)e^{-x} dx$ et $K = \int_0^1 x^2 f(x) dx$.
 - **a.** Au moyen d'une intégration par parties, prouver que $J = 3 \frac{4}{e}$.
 - **b.** Utiliser un encadrement de f(x) obtenu précédemment pour démontrer que $\frac{1}{3e} \leqslant K \leqslant \frac{1}{6}$.
 - c. Démontrer que J + K = 4I.
 - **d.** Déduire de tout ce qui précède un encadrement de I, puis donner une valeur approchée à 10^{-2} près de I.

Exercice

Type bac : Intégrales, Suites et exponentielle

Solution vidéo ↓

Soit n un entier naturel non nul. On considère la fonction f_n définie et dérivable sur l'ensemble \mathbb{R} des nombres réels par $f_n(x) = x^2 \mathrm{e}^{-2nx}$. On note \mathscr{C}_n la courbe représentative de la fonction f_n dans un repère orthogonal. On définit, pour tout entier naturel n non nul,

Partie A : Étude de la fonction f_1 .

La fonction f_1 est définie sur \mathbb{R} par $f_1(x) = x^2 \mathbf{e}^{-2x}$. On admet que f_1 est dérivable sur \mathbb{R} et on note f'_1 sa dérivée.

- **1** Justifier que pour tout réel $x, f'_1(x) = 2xe^{-2x}(1-x)$.
- **2** Étudier les variations de la fonction f_1 sur \mathbb{R} .
- **3** Déterminer la limite de f_1 en $-\infty$.
- 4 Vérifier que pour tout réel $x, f_1(x) = \left(\frac{x}{e^3}\right)^2$. En déduire la limite de f_1 en $+\infty$.

- **5** Justifier que la fonction F_1 définie sur \mathbb{R} par $F_1(x) = -e^{-2x}\left(\frac{x^2}{2} + \frac{x}{2} + \frac{1}{4}\right)$ est une primitive de f_1 sur \mathbb{R} .
- **6** En déduire la valeur exacte de I_1 .

Partie B: Étude de la suite (I_n) . Soit n un entier naturel non nul.

- 1 Interpréter graphiquement la quantité I_n .
- 2 Émettre alors une conjecture sur le sens de variation et sur la limite éventuelle de la suite (I_n) . Expliciter la démarche qui a mené à cette conjecture.
- 3 En déduire, pour tout entier naturel n non nul et pour tout réel x appartenant à $[0;1], f_{n+1}(x) \leq f_n(x).$
- 4 Déterminer alors le sens de variation de la suite (I_n) .
- 5 Soit n un entier naturel non nul. Justifier que pour tout entier naturel n non nul et pour tout réel x appartenant à $[0;1], 0 \leq f_n(x) \leq e^{-2nx}$.
- **6** En déduire un encadrement de la suite (I_n) , puis sa limite.

Exercice

Type bac : Equation différentielle et Intégrales

Solution vidéo ↓

Soit a un réel strictement positif. On considère la fonction f définie sur l'intervalle $[0; +\infty[$ par

$$f(x) = a \ln(x).$$

On note \mathscr{C} sa courbe représentative dans un repère orthonormé. Soit x_0 un réel strictement supérieur à 1.

- 1 Déterminer l'abscisse du point d'intersection de la courbe \mathscr{C} et de l'axe des abscisses.
- **2** Vérifier que la fonction F définie par $F(x) = a[x \ln(x) x]$ est une primitive de la function f sur l'intervalle $]0; +\infty[$.
- 3 En déduire l'aire du domaine bleuté en fonction de a et de x_0 .

On note T la tangente à la courbe \mathscr{C} au point M d'abscisse x_0 .

On appelle A le point d'intersection de la tangente T avec l'axe des ordonnées et B le projeté orthogonal de M sur l'axe des ordonnées.

Démontrer que la longueur AB est égale à une constante (c'est-à-dire à un nombre qui ne dépend pas de x_0) que l'on déterminera.

Type bac : Calcul intégral, suites et fonctions trigonométriques

Solution vidéo ↓

Pour tout entier naturel n, on considère les intégrales suivantes :

$$I_n = \int_0^{\pi} e^{-nx} \sin(x) dx, \quad J_n = \int_0^{\pi} e^{-nx} \cos(x) dx.$$

- **1** Calculer I_0 .
- **2** Justifier que, pour tout entier naturel n, on a $I_n \ge 0$.
- **3** Montrer que, pour tout entier naturel n, on a $I_{n+1} I_n \leq 0$.
- \checkmark Déduire des deux questions précédentes que la suite (I_n) converge.
- **5** Montrer que, pour tout entier naturel n, on a :

$$I_n \leqslant \int_0^\pi e^{-nx} dx$$

6 Montrer que, pour tout entier naturel $n \ge 1$, on a :

$$\int_0^{\pi} e^{-nx} dx = \frac{1 - e^{-n\pi}}{n}$$

- **7** Déduire des deux questions précédentes la limite de la suite (I_n).
- 8 En intégrant par parties l'intégrale I_n de deux façons différentes, établir le deux relations suivantes, pour tout entier naturel $n \ge 1$:

$$I_n = 1 + e^{-n\pi} - nJ_n$$
 et $I_n = \frac{1}{n}J_n$

9 En déduire que, pour tout entier naturel $n \ge 1$, on a

$$I_n = \frac{1 + e^{-n\pi}}{n^2 + 1}$$

Exercice 7

Type bac : Fonctions Trigonométriques et calcul Intégral

Le plan est rapporté à un repère orthogonal (O, \vec{i}, \vec{j}) . L'unité graphique est 4 cm sur l'axe des abscisses et 2 cm sur l'axe des ordonnées.

Partie A

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = (2 + \cos x)e^{1-x}$$
.

On note \mathscr{C} la courbe représentative de f dans le repère $(0, \vec{i}, \vec{j})$.

1 Montrer que, pour tout x de $\mathbb{R}: f(x) > 0$.

Solution vidéo ↓

- **2** Montrer que, pour tout x de \mathbb{R} : $\sqrt{2}\cos\left(x-\frac{\pi}{4}\right) = \cos x + \sin x$.
- 3 En déduire que, pour tout x de \mathbb{R} : $2 + \cos x + \sin x > 0$.
- 4 Montrer que f est strictement décroissante sur \mathbb{R} .
- **5** Montrer que, pour tout x de \mathbb{R} : $e^{1-x} \leq f(x) \leq 3e^{1-x}$.
- **6** En déduire les limites de f en $+\infty$ et en $-\infty$.
- 7 Interpréter géométriquement le résultat obtenu lors du calcul de la limite de f en $+\infty$.
- 8 Montrer que, sur l'intervalle $[0;\pi]$, l'équation f(x)=3 admet une solution unique
- **9** Donner un encadrement de α d'amplitude 10^{-2}

Partie B

On veut calculer l'aire, \mathscr{A} , exprimée en unités d'aire, du domaine limité par la courbe (\mathscr{C}) , l'axe des abscisses, l'axe des ordonnées et la droite d'équation x=1.

- 1 Montrer que : $\mathscr{A} = 2e 2 + \int_0^1 \cos t e^{1-t} dt$.
- 2 On pose $I = \int_0^1 \cos t e^{1-t} dt$ et $J = \int_0^1 \sin t e^{1-t} dt$. On admet que $J = -\sin 1 + I$.
 - Montrer que : $I = -\cos 1 + e J$
 - b.En déduire la valeur de I.
 - Déterminer la valeur exacte de \mathscr{A} en unités d'aire, puis donner une valeur c.approchée de \mathscr{A} à 10^{-2} près par défaut.