Les primitives

Jai20enMaths

Les primitives

1 Théorème fondamental

Définition 1.1

f est une fonction définie sur un intervalle I. On dit que f admet une primitive sur I si, et seulement si, il existe une fonction F dérivable sur I dont la dérivée est f.

Ainsi, pour tout réel x de I, on a : F'(x) = f(x)

Exemple 1

Soit f la fonction définie sur \mathbb{R} par f(x) = 6x.

Soit une fonction F dérivable sur $\mathbb R$ et définie par $F(x)=3x^2$. F est une primitive de f sur $\mathbb R$.

En effet : F'(x) = 6x

\bigcirc éfinition 1.2

Toute fonction continue sur un intervalle I admet des primitives sur I.

Définition 1.3

Soit f une fonction continue sur un intervalle ${\cal I}$.

- 1. Si F est une primitive de f sur I, alors les primitives de f sont les fonctions définies sur I par $x \mapsto F(x) + k$ où k est une constante réelle.
- 2. Si $x_0 \in I$ et $y_0 \in I$, f admet une unique primitive F telle que $F(x_0) = y_0$.

Younss Messoudi @Jai20enMaths

Déterminer la primitive F de la fonction $f\left(x\right)=6x$ tel que $F\left(1\right)=8$. Corrigé :

Les primitives de f sont alors de la forme $F(x) = 3x^2 + k$ avec $k \in \mathbb{R}$.

Or F(1) = 8 ainsi : $3 \times 1^2 + k = 8 \Leftrightarrow k = 8 - 3 \Leftrightarrow k = 5$

 $Finalement: F(x) = 3x^2 + 5$

Les primitives usuelles à connaître

Le tableau des primitives usuelles

Pour toute cette partie, on considérera a un réel non nul.

Fonction f	Une primitive de f	Intervalle
f(x) = a	F(x) = ax	\mathbb{R}
f(x) = ax	$F(x) = \frac{1}{2}ax^2$	\mathbb{R}
$f(x) = ax^n \text{ et } n \in \mathbb{N}^*$	$F(x) = \frac{ax^{n+1}}{n+1}$	\mathbb{R}
$f(x) = \frac{a}{\sqrt{x}}$	$F(x) = 2a\sqrt{x}$	$]0;+\infty[$
$f(x) = \frac{a}{x}$	$F(x) = -a \ln x$	$]0;+\infty[$
$f(x) = \frac{a}{x^2}$	$F(x) = -\frac{a}{x}$	$]-\infty;0[\cup]0;+\infty[$
$f(x) = \frac{1}{x^n}$ et $n \in \mathbb{N}$; $n \ge 2$	$F(x) = -\frac{1}{(n-1)x^{n-1}}$	$]-\infty;0[\ \cup\]0;+\infty[$
$f(x) = ae^x$	$F(x) = ae^x$	\mathbb{R}
$f(x) = a\cos x$	$F(x) = a\sin x$	\mathbb{R}
$f(x) = a\sin x$	$F(x) = -a\cos x$	\mathbb{R}

Exemple

Déterminer les primitives de la fonction f définie sur $]0; +\infty[$ par

$$f(x) = -3x + 5x^{2} + \frac{4}{x} - \frac{2}{x^{2}} + \frac{3}{\sqrt{x}} - 2$$

Corrigé:

On obtient alors

On obtient alors:
$$F(x) = -\frac{3}{2}x^2 + \frac{5}{3}x^3 + 4\ln(x) - \left(-\frac{2}{x}\right) + 3 \times 2\sqrt{x} - 2x + k \text{ où } k \in \mathbb{R}$$
$$F(x) = -\frac{3}{2}x^2 + \frac{5}{3}x^3 + 4\ln(x) + \frac{2}{x} + 6\sqrt{x} - 2x + k \text{ où } k \in \mathbb{R}$$

Exercice

Calculer les primitives usuelles.

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle I que l'on ne cherchera pas à déterminer.

Déterminer une primitive de chacune des fonctions suivantes.

- 1. f(x) = 6
- 2. f(x) = -7
- 3. f(x) = 3x
- 4. q(x) = -6x
- 5. h(x) = x 4
- 6. $h(x) = 4x^2$
- 7. $p(x) = 5x^3$
- 8. $q(x) = 7x^4 3x^2 8x + 9$

Exercice

Calculer les primitives usuelles.

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle I que l'on ne cherchera pas à déterminer.

Déterminer une primitive de chacune des fonctions suivantes.

- 1. Déterminer les primitives sur \mathbb{R} de la fonction f définie sur \mathbb{R} $par f(x) = 2\cos(x) + 4\sin x$
- 2. Déterminer les primitives sur $]0; +\infty [$ de la fonction f définie sur $]0; +\infty [$ par $f(x) = \frac{3}{x} - \frac{4}{x^2}$
- 3. Déterminer les primitives sur $]0; +\infty[$ de la fonction g définie sur $]0; +\infty[$ par $g(x) = 3e^x + \frac{4}{\sqrt{x}}$

Le tableau des primitives des fonctions composées

Dans le tableau ci-dessous, u désigne une fonction dérivable dont la dérivée est continue, sur un intervalle I:

Fonction f	Une primitive de f	Intervalle
$f(x) = \frac{u'}{u^2}$	$F(x) = -\frac{1}{u}$	$u(x) \neq 0$ pour tout $x \in I$
$f(x) = \frac{u'}{u}$	$F(x) = \ln(u)$	$u(x) > 0$ pour tout $x \in I$
$f(x) = \frac{u'}{\sqrt{u}}$	$F(x) = 2\sqrt{u}$	$u(x) > 0$ pour tout $x \in I$
$f(x) = u'u^n$	$F(x) = \frac{1}{n+1}u^{n+1}$	
$f(x) = u'e^u$	$F(x) = e^u$	
$f(x) = u' \cos u$	$F(x) = \sin u$	
$f(x) = u' \sin u$	$F(x) = -\cos u$	
$f(x) = \frac{u'}{u^n}$ avec $n \neq 1$	$F(x) = -\frac{1}{(n-1)u^{n-1}}$	$u(x) \neq 0$ pour tout $x \in I$

Primitive de la forme $\frac{u'}{u^2}$

Déterminer les primitives de la fonction f définie sur $\left|\frac{2}{5};+\infty\right|$ par $f(x)=\frac{6}{\left(5x-2\right)^2}$ Nous pouvons écrire que : $f(x) = \frac{6}{(5x-2)^2} \Leftrightarrow f(x) = \frac{6}{5} \times \frac{5}{(5x-2)^2}$

On obtient alors:

$$F(x) = \frac{6}{5} \times \frac{-1}{5x - 2} + k \text{ où } k \in \mathbb{R}$$

$$\text{d'où}: F(x) = \frac{-6}{5(5x - 2)} + k \text{ où } k \in \mathbb{R}$$

d'où : $F(x) = \frac{-6}{5(5x-2)} + k$ où $k \in \mathbb{R}$

Exercice

Calculer une primitive de la forme $x \mapsto \frac{u'(x)}{u^n(x)}$

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle Ique l'on ne cherchera pas à déterminer.

Déterminer une primitive de chacune des fonctions suivantes.

1.
$$f(x) = \frac{4}{(4x+8)^3}$$
.

$$2. \ g(x) = \frac{24}{(6x+1)^2} \ .$$

Exemple

Primitive de la forme $\frac{u'}{u}$

Déterminer les primitives de la fonction f définie sur $]6; +\infty[$ par $f(x) = \frac{4}{3r-18}$

Nous pouvons écrire que : $f(x) = \frac{4}{3x - 18} \Leftrightarrow f(x) = \frac{4}{3} \times \frac{3}{3x - 18}$

On obtient alors:

$$F(x) = \frac{4}{3} \times \ln(|3x - 18|) + k \text{ où } k \in \mathbb{R}$$

Nous pouvons également écrire car $F(x) = \frac{4}{3} \times \ln(3x - 18) + k$ où $k \in \mathbb{R}$ car 3x - 18 > 0sur l'intervalle $]6; +\infty[$

Exercice

Calculer une primitive de la forme $x \mapsto \frac{u'(x)}{u(x)}$

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle Ique l'on ne cherchera pas à déterminer.

Déterminer une primitive de chacune des fonctions suivantes.

1.
$$f(x) = \frac{6}{6x+2}$$
.

2.
$$f(x) = \frac{3x^2 + 2x}{x^3 + x^2}$$
.

3.
$$f(x) = \frac{7x}{x^2 + 1}$$
.

Exemple

Primitive de la forme $\frac{u'}{\sqrt{u}}$

Déterminer les primitives de la fonction f définie sur $]7; +\infty[$ par $f(x) = \frac{9}{\sqrt{5x-35}}$

Nous pouvons écrire que : $f(x) = \frac{9}{\sqrt{5x-35}} \Leftrightarrow f(x) = \frac{9}{5} \times \frac{5}{\sqrt{5x-35}}$

On obtient alors:

$$F(x) = \frac{9}{5} \times 2 \times \sqrt{5x - 35} + k \text{ où } k \in \mathbb{R} \text{ d'où }:$$

$$F(x) = \frac{18}{5} \times \sqrt{5x - 35} + k \text{ où } k \in \mathbb{R}$$

$$F(x) = \frac{18}{5} \times \sqrt{5x - 35} + k \text{ où } k \in \mathbb{R}$$

Exemple

Primitive de la forme $u'u^n$

Déterminer les primitives de la fonction f définie sur $]-\infty; +\infty[$ par $f(x)=2(7x-1)^3$ Nous pouvons écrire que : $f(x)=2(7x-1)^3 \Leftrightarrow f(x)=\frac{2}{7}\times 7\times (7x-1)^3$

On obtient alors

$$F(x) = \frac{2}{7} \times \frac{1}{3+1} \times (7x-1)^{3+1} + k \text{ où } k \in \mathbb{R}$$

d'où :
$$F(x) = \frac{1}{14} \times (7x - 1)^4 + k$$
 où $k \in \mathbb{R}$

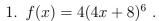
LES PRIMITIVES

Calculer une primitive de la forme $x \mapsto u'(x)u^n(x)$

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle Ique l'on ne cherchera pas à déterminer.

Déterminer une primitive de chacune des fonctions suivantes.



2.
$$f(x) = (2x+1)(x^2+x)^3$$
.

3.
$$f(x) = 5x(x^2 + 1)^7$$
.

Primitive de la forme $u'e^u$

Déterminer les primitives de la fonction f définie sur $]-\infty;+\infty[$ par $f(x)=e^{-2x+3}$

Nous pouvons écrire que : $f(x) = e^{-2x+3} \Leftrightarrow f(x) = \frac{1}{-2} \times (-2) \times e^{-2x+3}$

On obtient alors :
$$F\left(x\right)=-\frac{1}{2}\times e^{-2x+3}+k \text{ où } k\in\mathbb{R}$$

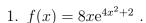
Exercice

Calculer une primitive de la forme $x \mapsto u'(x)e^{u(x)}$

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle Ique l'on ne cherchera pas à déterminer.

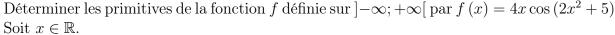
Déterminer une primitive de chacune des fonctions suivantes.



2.
$$f(x) = 12x^2 e^{x^3+1}$$

Exemple

Primitive de la forme $u' \cos u$



La fonction f est de la forme $u'\cos(u)$ avec $u(x) = 2x^2 + 5$.

De plus, u'(x) = 4x.

$$f(x) = 4x \cos(2x^2 + 5)$$
 s'écrit alors :

$$f(x) = u'\cos(u)$$

Or une primitive de $u'\cos(u)$ est de la forme $\sin(u)$

Il en résulte donc que les primitives primitive de f sur \mathbb{R} sont :

$$F(x) = \sin(u) + k$$
 où $k \in \mathbb{R}$ Ainsi : $F(x) = \sin(2x^2 + 5)$ où $k \in \mathbb{R}$

Exercice

Calculer une primitive de la forme $x \mapsto u'(x)\cos(u(x))$

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle I que l'on ne cherchera pas à déterminer.

Déterminer une primitive de chacune des fonctions suivantes.

1.
$$f(x) = (2x+1)\cos(x^2+x)$$
.

2.
$$g(x) = 5x\cos(4x^2 + 2)$$
.

Exemple 1

Primitive de la forme $u' \sin u$

Déterminer les primitives de la fonction f définie sur $]-\infty; +\infty[$ par $f(x)=2x\sin(x^2+9)$ Soit $x\in\mathbb{R}$.

La fonction f est de la forme $u'\sin(u)$ avec $u(x) = x^2 + 9$.

De plus, u'(x) = 2x.

 $f(x) = 2x \sin(x^2 + 9)$ s'écrit alors

 $f(x) = u' \sin(u)$ Or une primitive de $u' \sin(u)$ est de la forme $-\cos(u)$

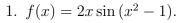
Il en résulte donc que les primitives de f sur \mathbb{R} sont : $F(x) = -\cos(u) + k$ où $k \in \mathbb{R}$ Ainsi : $F(x) = -\cos(x^2 + 9) + k$ où $k \in \mathbb{R}$

Calculer une primitive de la forme $x \mapsto u'(x)\sin(u(x))$

Solution vidéo ↓

On suppose que chacune des fonctions est continue sur un intervalle I que l'on ne cherchera pas à déterminer.

Déterminer une primitive de chacune des fonctions suivantes.



2.
$$g(x) = 8x \sin(2x^2 + 6)$$
.

LES PRIMITIVES