Les suites arithmétiques

Exercice

Calculer les termes d'une suite arithmétique à l'aide de la relation de récurrence

Soit (u_n) une suite arithmétique de raison r=2 et de premier terme $u_0 = 3$.

- **1** Calculer u_1 et u_2
- **2** Exprimer u_{n+1} en fonction de u_n

Exercice

Calculer les termes d'une suite arithmétique à l'aide de l'expression du terme général

- **1** Soit (u_n) une suite arithmétique de raison r=3 et de premier terme $u_0 = 2$. Exprimer u_n en fonction de n ou donner l'expression du terme général de la suite (u_n) puis calculer u_6 .
- **2** Soit (u_n) une suite arithmétique de raison $r=\frac{1}{2}$ et de premier terme $u_1 = 4$. Exprimer u_n en fonction de n ou donner l'expression du terme général de la suite (u_n) puis calculer u_8 .

Solution vidéo ↓

Exercice

Déterminer le sens de variation pour des suites arithmétiques

Déterminer le sens de variation pour chacune des suites arithmétiques ci-dessous:

- 1 (u_n) une suite arithmétique de raison r=3 et de premier terme $u_0 = 4$
- **2** (u_n) une suite arithmétique de raison r = -2 et de premier terme $u_0 = 3$.
- 3 La suite (u_n) est définie, pour tout entier naturel n, $par u_0 = 6 et u_{n+1} = u_n + 2$
- 4 La suite (u_n) est définie, pour tout entier naturel n, par $u_0 = 5$ et $u_{n+1} = u_n 6$

Solution vidéo ↓

Justifier qu'une suite est arithmétique

1 La suite (u_n) est définie, pour tout entier naturel n, $par u_n = 6n - 2.$ Justifier que la suite (u_n) est arithmétique.

Solution vidéo \downarrow

