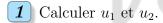
Sujets types bac : les suites

Exercice

Exercice type bac : Récurrence, suite arithmético-géométrique, limite

Solution vidéo ↓

On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel $n, u_{n+1} = 3u_n - 2n + 3$.



- **2** Démontrer par récurrence que, pour tout entier naturel $n, u_n \ge n$
- **3** En déduire la limite de la suite (u_n) .
- 4 Démontrer que la suite (u_n) est croissante.
- **5** Soit la suite (v_n) définie, pour tout entier naturel n, par $v_n = u_n n + 1$. Démontrer que la suite (v_n) est une suite géométrique.
- **6** En déduire que, pour tout entier naturel $n, u_n = 3^n + n 1$.

Exercice

Exercice type bac : Récurrence, suite arithmético-géométrique, Python et limite

Soit f la fonction définie sur l'intervalle $\left| -\frac{1}{3}; +\infty \right|$ par : $f(x) = \frac{4x}{1+3x}$. On considère la suite (u_n) définie par : $u_0 = \frac{1}{2}$ et, pour tout entier naturel $n, u_{n+1} = f(u_n)$.

- **1** Calculer u_1 .
- 2 On admet que la fonction f est croissante sur l'intervalle $\left|-\frac{1}{3};+\infty\right|$. Montrer par récurrence que, pour tout entier naturel n, on a : $\frac{1}{2} \leqslant u_n \leqslant u_{n+1} \leqslant 2$.
- 3 En déduire que la suite (u_n) est convergente.
- 4 On appelle ℓ la limite de la suite (u_n) . Déterminer la valeur de ℓ .
- 5 Recopier et compléter la fonction Python ci-dessous qui, pour tout réel positif E, déterminez la plus petite valeur P tel que : $1 - u_P < E$. $\operatorname{def} \operatorname{seuil}(E)$:

n = n + 1return n

- **6** Donner la valeur renvoyée par ce programme dans le cas où $E = 10^{-4}$.
- **7** On considère la suite (v_n) définie, pour tout entier naturel n, par : $v_n = \frac{u_n}{1 u_n}$ Montrer que la suite (v_n) est géométrique de raison 4. En déduire, pour tout entier naturel n, l'expression de v_n en fonction de n.
- **8** Démontrer que, pour tout entier naturel n, on a : $u_n = \frac{v_n}{v_n + 1}$.
- **9** Montrer alors que, pour tout entier naturel n, on a : $u_n = \frac{1}{1+0,25^n}$. Retrouver par le calcul la limite de la suite (u_n) .

