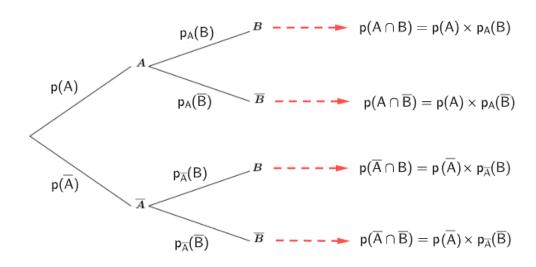
Les probabilités conditionnelles

Jai20enMaths

Les probabilités conditionnelles

- $oldsymbol{1}$ $P_B(A)$ qui se lit la probabilité de A sachant B
- **Définition 1.1** On appelle probabilité conditionnelle de B sachant A, la probabilité que l'événement B se réalise sachant que l'événement A est réalisé. On note alors : $P_A(B)$
- Définition 1.2 A et B sont deux événements d'un univers Ω . On sait également que $P(B) \neq 0$. On a la relation suivante : $P_B(A) = \frac{P(A \cap B)}{P(B)}$
- **2** La probabilité de l'intersection $P(A \cap B)$
- **Définition 1.3** Si A et B sont deux événements de probabilité non nulle, alors $P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$.
- Représenter une situation par un arbre pondéré
 - **Définition 1.4** Considérons deux événements A et B d'un univers Ω . Lorsque l'on connaît les probabilités de B ou de \bar{B} sachant que A est réalisé, on peut représenter ces probabilités à l'aide d'un arbre pondéré.

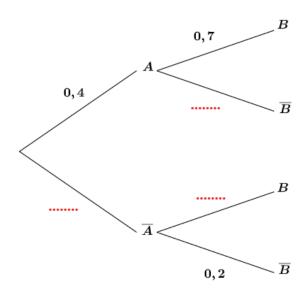
Younss Messoudi @Jai20enMaths



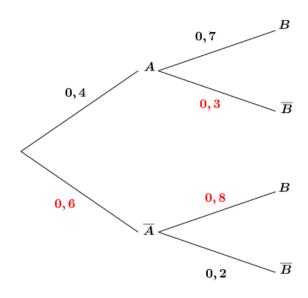
IMPORTANT : La somme des probabilités associées aux branches issues d'un nœud est égale à 1.

Exemple 1

Compléter l'arbre de probabilités ci-dessous :



Corrigé :



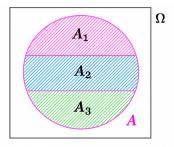
Les probabilités totales

1 Une partition de l'univers

Définition 1.5 Nous allons donner une définition en ne prenant compte que 3 : évènments et par la suite Vous pourrez généraliser cette définition à n évènements. On considère un événement A ainsi que les 3 événements non vides A_1 , A_2 et A_3 : tels que :

 $A_1; A_2$ et A_3 sont incompatibles c'est à dire $A_1 \cap A_2 = \emptyset; A_1 \cap A_3 = \emptyset$ et $A_2 \cap A_3 = \emptyset$.

De plus, $A_1 \cup A_2 \cup A_3 = A$. On dit que la famille des événements A_1 ; A_2 ; $A_3 =$ forme une partition de A.



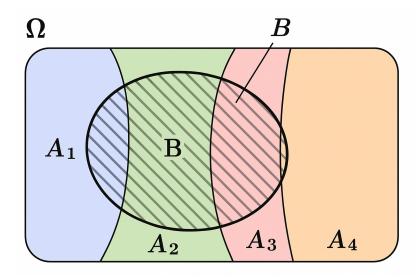
Comme dit précédemment nous pouvons reprendre ce même raisonnemet pour n évènements.

2 Formule des probabilités totales

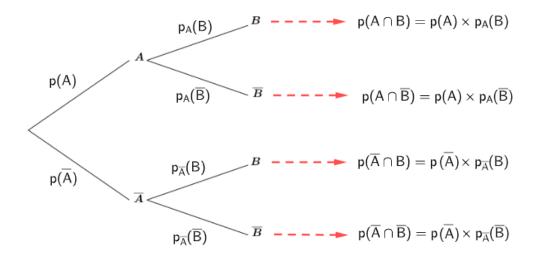
Pour cette définition, nous allons nous intéressés à 4 évènements. Par la suite, ce raisonnement est transposable à n évènements.

Soit A_1 , A_2 , A_3 , A_4 une partition de l'univers Ω , alors, pour tout événement B, on a :

$$p(B) = p(A_1 \cap B) + p(A_2 \cap B) + p(A_3 \cap B) + p(A_4 \cap B)$$



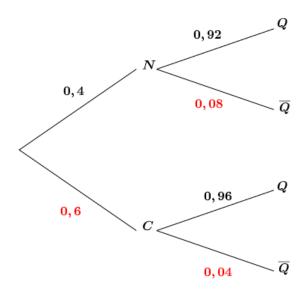
3 Formule des probabilités totales dans un arbre pondéré



Dans une situation d'arbre pondéré, la probabilité d'un événement est égale à la somme des probabilités des chemins conduisant à cet événement. Dans la situation ci-dessous on aura donc : $p(B) = P(A \cap B) + P(\overline{A} \cap B)$

Exemple

Dans une expérience aléatoire, on considère deux évènements N et Q permettant de construire l'arbre de probabilité :



- 1. Calculer $P(N\cap Q)$.
- 2. Calculer P(Q).
- 3. Calculer $p_Q(N)$.

Corrigé:

1.

$$p(N \cap Q) = p(N) \times p_N(Q)$$

$$p(N \cap Q) = 0, 4 \times 0, 92$$

$$p(N\cap Q)=0,368.$$

En prenant un pneu au hasard dans le stock, la probablité de choisir un pneu neige qui a réussi les tests de qualité est de 0,368.

2. Les événements N et C forment une partition de l'univers. D'après la formule des probabilités totales,

$$p(Q) = p(N \cap Q) + p(C \cap Q)$$

$$p(Q) = p(N \cap Q) + p(C) \times p_C(Q)$$

$$p(Q) = 0,368 + 0,6 \times 0,96$$

$$p(Q) = 0,944.$$

3. On cherche $p_Q(N)$. Or, $p_Q(N) = \frac{p(N \cap Q)}{p(Q)}$

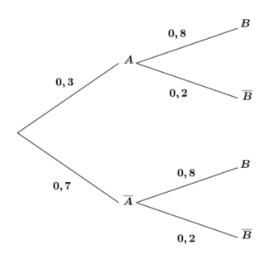
$$p_Q(N) = \frac{0,368}{0,944} \approx 0,390$$

Sachant que le pneu choisi a réussi les tests de qualité, la probabilité que ce pneu soit un pneu neige est environ de 0,390.

Évènements indépendants

- \bigcirc Définition 1.6 Deux événements A et B sont indépendants si et seulement si :
 - $P(A \cap B) = P(A) \times P(B)$

Dans une expérience aléatoire, on considère deux évènements A et B permettant de construire l'arbre de probabilité :



Les évènements A et B sont ils indépendants?

Corrigé:

A et \bar{A} forment une partition de l'univers.

D'après la formule des probabilités totales on a :

$$P(B) = P(A \cap B) + P(\bar{A} \cap B)$$

Soit : $P(B) = 0, 3 \times 0, 8 + 0, 7 \times 0, 8 = 0, 8$

De plus :
$$P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$$
 soit $P(A \cap B) = 0, 3 \times 0, 8 = 0, 24$

Enfin: $P(A) \times P(B) = 0, 3 \times 0, 8 = 0, 24$

Ainsi : $P(A \cap B) = P(A) \times P(B)$

Les évènements A et B sont bien indépendants.

Exercice

Vérifier si deux évènements sont indépendants.

Solution vidéo ↓

1 A et B désignent deux événements de l'univers d'une expérience aléatoire. Nous savons que P(A) = 0, 4; $P_A(B) = 0, 7$ et $P_{\overline{A}}(B) = 0,8$. Est ce que les évènements A et B sont indépendants?

Un exercice Bilan

Exercice

Un exercice type devoir sur les probabilités conditionnelles.

Une jardinerie vend de jeunes plants d'arbres qui proviennent de trois horticulteurs : 35% des plants proviennent de l'horticulteur H₁, 25% de l'horticulteur H₂ et le reste de l'horticulteur H₃. Chaque horticulteur livre deux catégories d'arbres des conifères et des arbres à feuilles.

La livraison de l'horticulteur H₁ comporte 80% de conifères alors que celle de l'horticulteur H_2 n'en comporte que 50% et celle de l'horticulteur H_3 seulement 30%.

Le gérant de la jardinerie choisit un arbre au hasard dans son stock.

On envisage les événements suivants :

- H_1 : « l'arbre choisi a été acheté chez l'horticulteur H_1 »,
- H₂ : « l'arbre choisi a été acheté chez l'horticulteur H₂ »,
- H_3 : « l'arbre choisi a été acheté chez l'horticulteur H_3 »,
- C: « l'arbre choisi est un conifère »,
- F: « l'arbre choisi est un arbre feuillu ».

Solution vidéo ↓

- 1 Construire un arbre pondéré traduisant la situation.
- 2 Calculer la probabilité que l'arbre choisi soit un conifère acheté chez l'horticulteur H_3 .
- 3 Justifier que la probabilité de l'évènement C est égale à 0,525 .
- L'arbre choisi est un conifère. Quelle est la probabilité qu'il ait été acheté chez l'horticulteur H_1 ? On arrondira à 10^{-3} .
- 5 Les évènements H_1 et C sont-ils indépendants?