Dérivation et convexité

Jai20enMaths

Rappels sur la dérivation (première spécia-

1 Récapitulatif des dérivées des fonctions usuelles

Fonction	Domaine de définition	Dérivée	Domaine de dérivabilité
$f\left(x\right) =a$	\mathbb{R}	$f'\left(x\right) = 0$	\mathbb{R}
$f\left(x\right) = ax + b$	\mathbb{R}	f'(x) = a	\mathbb{R}
$f(x) = x^n$ où $n \in \mathbb{N}^*$	\mathbb{R}	$f'\left(x\right) = nx^{n-1}$	\mathbb{R}
$f\left(x\right) = \frac{1}{x}$	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f\left(x\right) = \sqrt{x}$	$[0;+\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$	$]0;+\infty[$
$f\left(x\right) = e^{x}$	\mathbb{R}	$f'(x) = e^x$	\mathbb{R}
$f\left(x\right) = \cos\left(x\right)$	\mathbb{R}	$f'(x) = -\sin(x)$	\mathbb{R}
$f\left(x\right) = \sin\left(x\right)$	\mathbb{R}	$f'\left(x\right) = \cos\left(x\right)$	\mathbb{R}
$f\left(x\right) = \frac{1}{x^n}$	\mathbb{R}^*	$f'(x) = -\frac{n}{x^{n+1}}$	\mathbb{R}^*

2 Dérivée de la somme

Définition 1.1

- Soient u et v deux fonctions définies et dérivables sur un intervalle I.
- Alors la fonction u + v est définie et dérivable sur I et (u + v)' = u' + v'.

•

3 Dérivée du produit par un scalaire

Définition 1.2

Soient u une fonction définie et dérivable sur un intervalle I et k un réel. Alors la fonction $k \times u$ est définie et dérivable sur I et $(k \times u)' = k \times u'$.

•

- 4 Dérivée du produit
 - Définition 1.3

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction $u \times v$ est définie et dérivable sur I et $(u \times v)' = u'v + uv'$

•

5 Dérivée du quotient

Définition 1.4

Soient u et v deux fonctions définies et dérivables sur un intervalle I. Alors la fonction $\frac{u}{v}$ est définie et dérivable sur I et $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

.

6 Dérivée de l'inverse

Définition 1.5

Soit v une fonction définie et dérivable sur un intervalle I.

Alors la fonction $\frac{1}{v}$ est définie et dérivable sur I et $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$

ė

Fonction composée

Définition 1.6

On appelle fonction composée des fonctions u par v la fonction notée $v \circ u$ définie par:

$$v \circ u(x) = v(u(x)).$$

Exemple

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x+3}$.

Décomposer f sous la forme $v \circ u$ en précisant les fonctions u et v.

Corrigé:

$$x \stackrel{u}{\longmapsto} \underbrace{2x+3}_{X} \stackrel{v}{\longmapsto} e^{X} = e^{2x+3}$$

Nous avons donc $f(x) = (v \circ u)(x)$ où u est la fonction définie sur \mathbb{R} par u(x) = 2x + 3et v est la fonction définie sur \mathbb{R} par $v(x) = e^x$. Il en résulte donc que f est aussi définie sur \mathbb{R} .

Schéma de composition.

Solution vidéo ↓

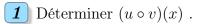
1 Soit f la fonction definie sur \mathbb{R} par $f(x) = \sqrt{3x^2 + 6}$. Décomposer f sous la forme $(v \circ u)(x)$ en précisant u et v.

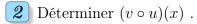
Exercice

Fonctions composées : Savoir calculer $(u \circ v)(x)$

Solution vidéo ↓

Soient u et v deux fonctions définies sur \mathbb{R} telles que u(x) = 2x + 6 et $v(x) = x^2 + 5x$.





Formule dérivée d'une fonction composée

Définition 1.7

Soit u une fonction dérivable sur un intervalle I, et v une fonction dérivable sur un intervalle J tel que, pour tout réel x de I, u(x) appartient à J, alors la fonction $v \circ u$ est dérivable sur I et, pour tout x appartenant à I : $(v \circ u)'(x) = u'(x) \times v'(u(x))$.

3 Dérivée de la puissance

Définition 1.8

• Soit n un entier non nul.

Soit u une fonction définie et dérivable sur un intervalle I.

Alors la fonction u^n est définie et dérivable sur I et $(u^n)' = nu'u^{n-1}$

Exemple 2

On considère la fonction f définie sur \mathbb{R} par $f(x) = (2x - 1)^5$. Calculer la dérivée f' de f.

Corrigé:

f est dérivable sur \mathbb{R}

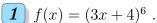
On reconnaît ici u^n où u(x) = 2x - 1 et n = 5. Ainsi u'(x) = 2. II en résulte que :

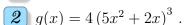
$$f'(x) = 5 \times 2 \times (2x - 1)^{5-1}$$

$$f'(x) = 5 \times 2 \times (2x - 1)^4$$

Finalement: $f'(x) = 10(2x - 1)^4$

On considère que les fonctions f et g sont dérivables sur $\mathbb R$. Calculer la dérivée des fonctions dans chacun des cas.





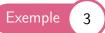
Solution vidéo ↓

4 Dérivée de la racine

Définition 1.9

Soit u une fonction définie et dérivable sur un intervalle I.

Alors la fonction \sqrt{u} est définie et dérivable sur I et $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$



On considère la fonction f définie sur $\left[\frac{5}{4}; +\infty\right[$ par $f(x) = \sqrt{4x-5}$.

Calculer la dérivée f' de f.

Corrigé:

On rappelle dans cette situation que f est dérivable si et seulement si 4x-5>0

Or :
$$4x - 5 > 0 \Leftrightarrow 4x > 5 \Leftrightarrow x > \frac{5}{4}$$

f est dérivable sur $\left]\frac{5}{4}; +\infty\right[$

On reconnaît ici \sqrt{u} où u(x) = 4x - 5. Ainsi u'(x) = 4.

 $f'(x) = \frac{4}{2\sqrt{4x - 5}}$ Ainsi:

Il en résulte que : $f'(x) = \frac{2}{\sqrt{4x-5}}$

Exercice

Solution vidéo ↓

On considère que les fonctions f; g et h sont dérivables sur un intervalle I que l'on ne cherchera pas à déterminer. Calculer la dérivée des fonctions dans chacun des cas.

- 1 $f(x) = \sqrt{5x+4}$.
- $q(x) = 7\sqrt{3x-1}$.
- 3 $h(x) = 3\sqrt{x^2 + 5x + 1}$.

Dérivée de l'exponentielle

Définition 1.10

- Soit u une fonction définie et dérivable sur un intervalle I.
- Alors la fonction e^u est définie et dérivable sur I et $(e^u)' = u'e^u$

Exemple

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2e^{6x-4}$. Calculer la dérivée f' de f.

Corrigé:

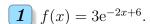
f est dérivable sur \mathbb{R} .

Ici u(x) = 6x - 4 et donc u'(x) = 6.

D'où $f'(x) = 2 \times 6 \times e^{6x-4} \Leftrightarrow f'(x) = 12e^{6x-4}$

Exercice

On considère que les fonctions f; g et p sont dérivables sur \mathbb{R} . Calculer la dérivée des fonctions dans chacun des cas.



2
$$g(x) = 5e^{x^2 - 4}$$
.

$$9 p(x) = xe^{-x}$$
.

Solution vidéo ↓

Dérivation et convexité

6 Dérivée du cosinus

Définition 1.11

· Soit u une fonction définie et dérivable sur un intervalle I.

Alors la fonction $\cos(u)$ est définie et dérivable sur I et $(\cos(u))' = -u'\sin(u)$

Exemple 5

On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos(4x - 5)$. Calculer la dérivée f' de f.

Corrigé:

f est dérivable sur \mathbb{R} .

On reconnaît ici $\cos(u)$ où u(x) = 4x - 5. Ainsi u'(x) = 4.

II en résulte que : $f'(x) = -4\sin(4x - 5)$

Exercice

On considère que les fonctions f et g sont dérivables sur $\mathbb R$. Calculer la dérivée des fonctions dans chacun des cas.

$$1 f(x) = 2\cos\left(3x - \frac{\pi}{4}\right).$$

$$2 g(x) = 4\cos\left(9x + \frac{\pi}{3}\right).$$

Solution vidéo ↓

7 Dérivée du sinus

Définition 1.12

· Soit u une fonction définie et dérivable sur un intervalle I.

Alors la fonction $\sin(u)$ est définie et dérivable sur I et $(\sin(u))' = u'\cos(u)$

On considère la fonction f définie sur \mathbb{R} par $f(x) = \sin(9x + 1)$. Calculer la dérivée f' de f.

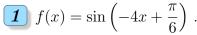
Corrigé:

f est dérivable sur \mathbb{R} .

On reconnaît ici $\sin(u)$ où u(x) = 9x + 1. Ainsi u'(x) = 9.

II en résulte que : $f'(x) = 9\cos(9x+1)$

On considère que les fonctions f et g sont dérivables sur $\mathbb R$. Calculer la dérivée des fonctions dans chacun des cas.



$$2 g(x) = 2\sin\left(3x - \frac{\pi}{4}\right).$$

Solution vidéo ↓

Convexité

Fonction convexe

Définition 1.13

Soit f une fonction deux fois dérivable sur un intervalle I.

f est une fonction convexe sur un intervalle I si sa courbe représentative C_f est située entièrement au-dessus de chacune de ses tangentes.

f est une fonction convexe sur un intervalle I si chacune de ses tangentes sont en dessous de la courbe représentative C_f .

Fonction concave

Définition 1.14

Soit f une fonction deux fois dérivable sur un intervalle I.

f est une fonction concave sur un intervalle I si sa courbe représentative C_f est située entièrement en-dessous de chacune de ses tangentes.

f est une fonction concave sur un intervalle I si chacune de ses tangentes sont au-dessus de la courbe représentative C_f . Nous avons tracé ci-dessous 3 tangentes à la courbe C_f .

Relation avec la dérivée seconde et la convexité

Définition 1.15

Soit f une fonction deux fois dérivable sur un intervalle I.

f est convexe sur I si et seulement si $f''(x) \ge 0$ sur I.

f est concave sur I si et seulement si $f''(x) \leq 0$ sur I.

Lien convexité d'une fonction f et signe de la dérivée seconde de f

1 On considère la forction f définie sur \mathbb{R} par

$$f(x) = 2x^3 - x^2 + 2x - 6$$

Etudier la convexité de f.

Solution vidéo ↓

4 Relation avec la dérivée et la convexité

Définition 1.16

Soit f une fonction dérivable sur un intervalle I.

Si f est convexe sur I alors f' est croissante sur I.

Si f est concave sur I alors f' est décroissante sur I.

5 Point

Point d'inflexion

Définition 1.17

Un point d'inflexion est un point où la courbe représentative traverse sa tangente. Au point d'inflexion, la fonction change de convexité.

ė

Définition 1.18

Soit f une fonction dérivable sur un intervalle I.

f possède un point d'inflexion lorsque sa dérivée seconde s'annule et change de signe en ce point.

ė