Limites de suites

Jai20enMaths

Notion de limite d'une suite

1 Limite infinie

- **Définition 1.1** Une suite (u_n) a pour limite $+\infty$ lorsque tout intervalle de la : forme $[A; +\infty[$, où A est un réel, contient tous les termes de la suite à partir d'un : certain rang n_0 . On note alors : $\lim_{n\to+\infty} u_n = +\infty$.
- **Définition 1.2** Une suite (u_n) a pour limite $-\infty$ lorsque tout intervalle de la forme $]-\infty$; A[, où A est un réel, contient tous les termes de la suite à partir d'un certain rang n_0 . On note alors : $\lim_{n\to+\infty} u_n = -\infty$.

2 Limite finie et suite convergente

- Définition 1.3 Une suite (u_n) est convergente lorsqu'il existe un réel ℓ tel que tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang n₀.
 On note alors : lim _{n→+∞} u_n = ℓ.
- **Définition 1.4** Une suite qui ne converge pas est dite divergente.

Younss Messoudi @Jai20enMaths

Suite divergente

- **Définition 1.5** Si une suite (u_n) diverge, il y a donc deux cas possibles :
 - soit la suite diverge vers $-\infty$ ou $+\infty$
 - soit la suite n'a aucune limite ni finie, ni infinie.

Les limites usuelles

efinition 1.6 $\lim_{n \to +\infty} n = +\infty, \lim_{n \to +\infty} n^2 = +\infty, \lim_{n \to +\infty} \sqrt{n} = +\infty.$ $\lim_{n \to +\infty} \frac{1}{n} = 0, \quad \lim_{n \to +\infty} \frac{1}{n^2} = 0, \quad \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0.$ Définition 1.6

$$\lim_{n \to +\infty} \frac{1}{n} = 0, \quad \lim_{n \to +\infty} \frac{1}{n^2} = 0, \quad \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0.$$

Les suites de terme général n, n^2, \sqrt{n} divergent.

Les suites de terme général $\frac{1}{n}, \frac{1}{n^2}, \frac{1}{\sqrt{n}}$ convergent.

Limite d'une suite géométrique

 \bigcirc éfinition 1.7 Soit q un réel.

Si
$$-1 < q < 1$$
 alors $\lim_{n \to +\infty} q^n = 0$

Si
$$q > 1$$
 alors $\lim_{n \to +\infty} q^n = +\infty$

Si
$$q = 1$$
 alors $\lim_{n \to \infty} q^n = 1$

Si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$ Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$ Si q = 1 alors $\lim_{n \to +\infty} q^n = 1$ Si $q \le -1$ alors $\lim_{n \to +\infty} q^n$ n'exis n'existe pas.

Exemple 1

Calculer
$$\lim_{n \to +\infty} 3 \times \left(-\frac{5}{6}\right)^n + 2$$

Corrigé:

Comme $-1 < -\frac{5}{6} < 1 \text{ alors}$:

$$\lim_{n \to +\infty} \left(-\frac{5}{6} \right)^n = 0$$

$$\lim_{n \to +\infty} 3 \times \left(-\frac{5}{6} \right)^n = 0$$

$$\lim_{n \to +\infty} 3 \times \left(-\frac{5}{6} \right)^n + 2 = 2$$

 $\lim_{n \to +\infty} u_n = 2$ Ainsi:

Exercice

Solution vidéo ↓

Déterminer la limite de la suite (u_n) dans les cas suivants :

- 1 $u_n = 3 \times (0,4)^n$
- $2 u_n = 2 \times \left(\frac{4}{3}\right)^n$
- $\boxed{4} \ u_n = 3 \times \left(\frac{1}{2}\right)^n + 0, 6$

Opérations sur les limites

Limite d'une somme

Soient ℓ et ℓ' deux réels.

(u_n) a pour limite	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
(v_n) a pour limite	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$(u_n + v_n)$ a donc pour limite	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	forme indéterminée

Exemple

On considère la suite (u_n) définie pour tout entier naturel n par $u_n=3n^2+4n-5$. En déduire la limite de (u_n) .

Corrigé:

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 3n^2 = +\infty$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 4n - 5 = +\infty$$
 par somme :
$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 3n^2 + 4n - 5 = +\infty$$

Finalement :
$$\lim_{n \to +\infty} u_n = +\infty$$

Limite d'un produit

Soient ℓ et ℓ' deux réels.

(u_n) a pour limite	ℓ	$\ell \neq 0$	0	∞
(v_n) a pour limite	ℓ'	∞	∞	∞
$(u_n \times v_n)$ a donc pour limite	$\ell \times \ell'$	∞	forme indéterminée	∞

Il faudra bien entendu appliquer la régle des signes afin d'avoir comme résultat soit $-\infty$ ou $+\infty$.

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = (2n + 3)(-5n + 2)$. En déduire la limite de (u_n) .

Corrigé:

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 2n + 3 = +\infty$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} -5n + 2 = -\infty$$

$$\left.\begin{array}{l} \text{par produit :} & \lim_{\substack{n \to +\infty \\ n \to +\infty}} (2n+3) \left(-5n+2\right) = -\infty \end{array}\right\}$$

Finalement:
$$\lim_{n \to +\infty} u_n = -\infty$$

3 Limite d'un quotient

Soient ℓ et ℓ' deux réels. Dans ce tableau, FI signifie forme indéterminée.

(u_n) a pour limite	ℓ	$\ell \neq 0$	0	ℓ	∞	∞
(v_n) a pour limite	$\ell' \neq 0$	0^{+} ou 0^{-}	0	∞	ℓ'	∞
$\left(\frac{u_n}{v_n}\right)$ a donc pour limite	$rac{\ell}{\ell'}$	$\pm \infty$	FI	0	$\pm \infty$	FI

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = \frac{2}{6n+5}$. En déduire la limite de (u_n).

Corrigé:

Finalement :
$$\lim_{n \to +\infty} u_n = 0$$

Exercice

Solution vidéo ↓

Déterminer la limite de la suite (u_n) dans les cas suivants :

$$2 u_n = -4n$$

$$3 u_n = 2n - 6$$

$$\boxed{4} u_n = -n^2$$

$$u_n = 2n^2 + 5n + 6$$

6
$$u_n = (4-n)(1-n^2)$$

$$7 u_n = \frac{5}{n}$$

Formes indéterminées

1 Les formes à reconnaitre

Définition 1.8 Les quatre formes indéterminées à connaître sont

$$\frac{0}{0}; \frac{\infty}{\infty}; 0 \times \infty; \infty - \infty$$

2 Lever une forme indéterminée à l'aide de la factorisation (polynôme)

Définition 1.9 Pour étudier la limite en $+\infty$ d'une suite dont le terme générale est un polynôme il faut factoriser par le terme de plus haut degré.

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 3n^2 - 4n + 1$. En déduire la limite de (u_n) .

Corrigé :

$$\lim_{\substack{n\to +\infty\\ n\to +\infty}} 3n^2 = +\infty$$

$$\lim_{\substack{n\to +\infty\\ n\to +\infty}} -n+1 = -\infty$$
 par addition, nous avons une forme indéterminée.

Pour lever cette indétermination, nous allons factoriser par le monôme de plus haut degré. Ici, en l'occurrence par n^2 . II vient alors que :

$$\lim_{n \to +\infty} 3n^2 - 4n + 1 = \lim_{n \to +\infty} n^2 \left(\frac{3n^2 - 4n + 1}{n^2} \right)$$

$$\lim_{n \to +\infty} 3n^2 - 4n + 1 = \lim_{n \to +\infty} n^2 \left(\frac{3n^2 - 4n + 1}{n^2} + \frac{1}{n^2} \right)$$

$$\lim_{n \to +\infty} 3n^2 - 4n + 1 = \lim_{n \to +\infty} n^2 \left(3 - \frac{4}{n} + \frac{1}{n^2} \right)$$

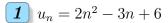
$$\lim_{n \to +\infty} n^2 = +\infty$$

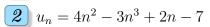
$$\lim_{n \to +\infty} n^2 = +\infty$$

$$\lim_{n \to +\infty} 3 - \frac{4}{n} + \frac{1}{n^2} = 3$$
par produit : $\lim_{n \to +\infty} n^2 \left(3 - \frac{4}{n} + \frac{1}{n^2} \right) = +\infty$.

Finalement: $\lim_{n \to +\infty} 2n^2 - n + 1 = +\infty$

Déterminer la limite de la suite (u_n) dans les cas suivants :





Solution vidéo ↓

- 3 Lever une forme indéterminée à l'aide de la factorisation (quotient de polynômes)
 - **Définition 1.10** Pour étudier la limite en $+\infty$ d'une suite dont le terme générale est un quotient de polynômes il faut factoriser le numérateur et le dénominateur par leur terme de plus haut degré.

$$\lim_{\substack{n\to+\infty\\ n\to+\infty}} n+1=+\infty \\ \lim_{n\to+\infty} 2n+3=+\infty \end{array} \right\} \text{ par quotient, nous avons une forme indéterminée.}$$

Pour lever cette indétermination on va factoriser le numérateur par le monôme de plus haut degré c'est à dire par n et le dénominateur par le monôme de plus haut degré c'est à dire par n II vient alors que :

$$\lim_{n \to +\infty} \frac{n+1}{2n+3} = \lim_{n \to +\infty} \frac{n\left(\frac{n+1}{n}\right)}{n\left(\frac{2n+3}{n}\right)}$$

$$\lim_{n \to +\infty} \frac{n+1}{2n+3} = \lim_{n \to +\infty} \frac{n\left(\frac{n}{n} + \frac{1}{n}\right)}{n\left(\frac{2n}{n} + \frac{3}{n}\right)}$$

teur, et on obtient :

 $\lim_{n \to +\infty} \frac{n+1}{2n+3} = \lim_{n \to +\infty} \frac{n\left(1+\frac{1}{n}\right)}{n\left(2+\frac{3}{n}\right)}.$ On simplifie par n au numérateur et au dénomina-

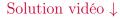
$$\lim_{n \to +\infty} \frac{n+1}{2n+3} = \lim_{n \to +\infty} \frac{1+\frac{1}{n}}{2+\frac{3}{n}}$$

$$\lim_{n \to +\infty} 1 + \frac{1}{n} = 1$$

$$\lim_{n \to +\infty} 2 + \frac{3}{n} = 2$$

$$\lim_{n \to +\infty} 2 + \frac{3}{n} = 2$$
par quotient :
$$\lim_{n \to +\infty} \frac{1+\frac{1}{n}}{2+\frac{3}{n}} = \frac{1}{2}$$

 $\lim_{n \to +\infty} \frac{n+1}{2n+3} = \frac{1}{2}$ Finalement:



Limites et comparaison

Déterminer la limite de la suite (u_n) dans le cas suivant :

théorème des gendarmes

Le théorème des gendarmes permet de déterminer une limite finie.

Définition 1.11 Soit ℓ un réel, $(u_n), (v_n)$ et (w_n) trois suites telles que : $u_n \le v_n \le w_n$ à partir d'un certain rang,

Si
$$\lim_{n \to +\infty} u_n = \ell$$
 et $\lim_{n \to +\infty} w_n = \ell$ alors : $\lim_{n \to +\infty} v_n = \ell$

Exemple

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = \frac{5 + (-1)^n}{n}$. En déduire la limite de (u_n) .

Corrigé:

Pour tout entier naturel n non nul, on sait que : $-1 \le (-1)^n \le 1$ équivaut successivement à :

$$-1 + 5 \le 5 + (-1)^n \le 5 + 1$$

$$4 \le 5 + \cos(n) \le 6$$

On va ensuite diviser par n qui est strictement positif

$$\frac{4}{n} \le \frac{5 + (-1)^n}{n} \le \frac{6}{n}$$
$$\frac{4}{n} \le u_n \le \frac{6}{n}$$

Dans un premier temps :

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 4 = \lim_{\substack{n \to +\infty \\ +\infty}} n = 0$$
 par quotient
$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{4}{n} = 0$$

Dans un second temps:

$$\left| \lim_{\substack{n \to +\infty \\ n \to +\infty}} 6 = \atop \lim_{\substack{n \to +\infty \\ +\infty}} n = \right\} \text{ par quotient } \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{6}{n} = 0$$

Nous savons que : $\frac{4}{n} \le u_n \le \frac{6}{n}$ D'après le théorème des gendarmes $\lim_{n \to +\infty}$

Déterminer la limite de la suite (u_n) dans les cas suivants :

$$u_n = \frac{n + (-1)^n}{n^2 + 1}$$

Solution vidéo ↓

2 théorème de comparaison

Le théorème de comparaison permet de déterminer une limite infinie.

Définition 1.12 Soient (u_n) et (v_n) deux suites telles que $u_n \leq v_n$ à partir d'un certain rang, Si $\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = +\infty$ alors $\lim_{\substack{n \to +\infty \\ n \to +\infty}} v_n = +\infty$ Si $\lim_{\substack{n \to +\infty \\ n \to +\infty}} v_n = -\infty$ alors $\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = -\infty$ Exemple

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = \frac{5 + (-1)^n}{n}$.

En déduire la limite de (u_n) .

Corrigé:

Pour tout entier naturel n, on sait que :

$$-1 \le (-1)^n \le 1$$
 équivaut successivement à :

$$-1 + n + 2 \le (-1)^n + n + 2 \le 1 + n + 2$$

$$n+1 \le u_n \le n+3$$

D'une part : $\lim n+1=+\infty$

D'autre part : $\lim_{n \to +\infty} n + 3 = +\infty$

Attention, ici on n'applique pas le théorème des gendarmes car les limites ne sont pas des valeurs finies.

On va garder l'inégalité de gauche, ce qui donne : $n+1 \le u_n$

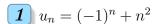
Comme $\lim_{n\to+\infty} n+1=+\infty$ et $u_n\geq n+1$ alors d'après le théorème de comparaison

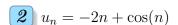
$$\lim_{n \to +\infty} u_n = +\infty$$

Exercice

Solution vidéo ↓

Déterminer la limite de la suite (u_n) dans les cas suivants :





Limites de suites monotones

Suites majorées, minorées, bornées

Définition 1.13 Une suite $(u_n)_{n\in\mathbb{N}}$ est :

majorée s'il existe un réel M tel que, pour tout entier naturel $n: u_n \leq M$.

minorée s'il existe un réel m tel que, pour tout entier naturel $n: u_n \geq m$. bornée si elle est majorée et minorée. Autrement dit, s'il existe deux réels m et

M tel que, pour tout entier naturel n on a : $m \leq u_n \leq M$

Définition 1.14 Une suite décroissante et minorée est convergente, elle admet donc une limite finie.

Une suite croissante et majorée est convergente, elle admet donc une limite finie.

•