Dérivation globale Applications de la dérivation

Jai20enMaths

Variations d'une fonction

- 1 Lien entre les variations d'une fonction et le signe de sa dérivée
 - Définition 1.1

Soit f une fonction dérivable sur un intervalle I.

Si, pour tout réel $x \in I$, $f'(x) \le 0$ alors f est décroissante sur I.

Si, pour tout réel $x \in I$, $f'(x) \ge 0$ alors f est croissante sur I.

2 Étudier les variations d'une fonction de la forme $f(x) = ax^2 + bx + c$

Exemple

Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^2 + 10x - 2$.

1. Déterminer l'expression de la dérivée f' de f.

2. Etudier le signe de $f'\left(x\right)$ en fonction de x et en déduire le tableau de variation de f sur $\mathbb R$.

Corrigé:

1

f est dérivable sur \mathbb{R} en tant que fonction polynôme du second degré.

On a :
$$f'(x) = 10x + 10$$

2

Ici la dérivée est une fonction du premier degré.

Pour étudier son signe, nous allons résoudre l'inéquation f'(x) > 0.

En effet, en résolvant $f'(x) \ge 0$, on déterminera ainsi l'intervalle sur lequel la dérivée est positive ou nulle.

Il vient alors que :

 $f'(x) \ge 0$ équivaut successivement à

$$10x + 10 \ge 0$$

$$10x \ge -10$$

$$x \ge \frac{-10}{10}$$

$$x \ge -1$$

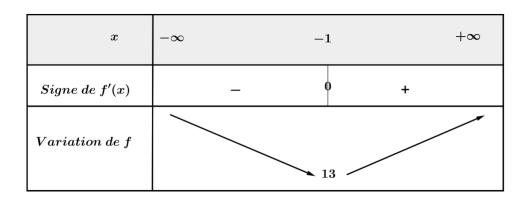
Cela signifie que l'on va mettre le signe + dans la ligne de 10x+10 lorsque x sera supérieur ou égale à -1.

Il en résulte donc que :

si $x \in]-\infty;-1]$ alors $f'(x) \leq 0$ et donc f est décroissante sur cet intervalle.

si $x \in [-1; +\infty[$ alors $f'(x) \ge 0$ et donc f est croissante sur cet intervalle.

Nous traduisons toutes ces informations dans le tableau de variation ci-dessous :



Exercice 1

Étudier les variations d'une fonction de la forme $x\mapsto ax^2+bx+c$.

Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - 12x - 4$.

- 1 Déterminer l'expression de la dérivée f' de f.
- **2** Etudier le signe de f'(x) en fonction de x.
- 3 En déduire le tableau de variation de f.

Exercice 2

Étudier les variations d'une fonction de la forme $x \mapsto (ax + b)(cx + d)$

Soit f la fonction définie sur \mathbb{R} par f(x) = (-4x + 2)(2x - 5).

- 1 Déterminer l'expression de la dérivée f' de f.
- **2** Etudier le signe de f'(x) en fonction de x.
- 3 En déduire le tableau de variation de f.

Solution vidéo ↓

Solution vidéo ↓

3 Étudier les variations d'une fonction de la forme $f\left(x
ight)=ax^{3}+bx^{2}+cx+d$

Exemple 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = -2x^3 - 5x + 8$.

- 1. Déterminer l'expression de la dérivée f' de f.
- 2. Etudier le signe de f'(x) en fonction de x et en déduire le tableau de variation de f

sur \mathbb{R} .

Corrigé:

f est dérivable sur \mathbb{R} en tant que fonction polynôme du second degré.

On a :
$$f'(x) = -6x^2 - 5$$

Pour tout réel x, on sait que $x^2 \ge 0$ ainsi $-6x^2 \le 0$.

Il vient alors que : $-6x^2 - 5 \le -5$.

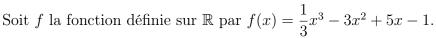
Il en résulte donc que, pour tout réel x, on a : f'(x) < 0.

Si $x \in]-\infty; +\infty[$ alors f'(x) < 0 et donc f est strictement décroissante sur cet intervalle.

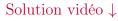
x	$-\infty$ $+\infty$
$Signe\ de\ f'(x)$	_
$Variation \ de \ f$	

Exercice

Étudier les variations d'une fonction de la forme $x \mapsto ax^3 + bx^2 + cx + d$



- **1** Déterminer l'expression de la dérivée f' de f.
- **2** Etudier le signe de f'(x) en fonction de x.
- 3 En déduire le tableau de variation de f.



Étudier les variations d'une fonction de la forme $f\left(x\right)=\dfrac{ax+b}{cx+d}$

Soit f la fonction définie sur $\mathbb{R} - \{-3\}$ par $f(x) = \frac{5x-1}{2x+6}$.

- 1. Déterminer l'expression de la dérivée f' de f.
- 2. Etudier le signe de f'(x) en fonction de x et en déduire le tableau de variation de f sur $\mathbb{R} - \{-3\}$.

Corrigé:

f est dérivable sur $\mathbb{R} - \{-3\}$ (on enlève la valeur interdite).

On reconnaît la forme $\left| \left(\frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \right|$ avec u(x) = 5x - 1 et v(x) = 2x + 6

Ainsi : u'(x) = 5 et v'(x) = 2.

Il vient alors que

Il vient alors que
$$f'(x) = \frac{5 \times (2x+6) - (5x-1) \times (2)}{(2x+6)^2}$$

$$f'(x) = \frac{10x+30 - (10x-2)}{(2x+6)^2}$$

$$f'(x) = \frac{10x+30-10x+2}{(2x+6)^2}$$

$$f'(x) = \frac{32}{(2x+6)^2}$$

Pour tout réel $x \in \mathbb{R} - \{-3\}$ on vérifie aisément que 32 > 0 et également que $(2x+6)^2 > 0$.

Si $x \in \mathbb{R} - \{-3\}$ alors f'(x) < 0 et donc f est strictement décroissante sur l'intervalle $]-\infty;-3[$ et également strictement décroissante sur l'intervalle $]-3;+\infty[$

x	$-\infty$		3	+∞
Signe de $f'(x)$	+	-	+	
$Variation\ de\ f$				

Étudier les variations d'une fonction de la forme $x \mapsto \frac{ax+b}{cx+d}$

Solution vidéo ↓

Soit f la fonction définie sur $]-\infty; 2[\,\cup\,]2; +\infty[$ par $f(x) = \frac{3x+5}{x-2}$.

- Déterminer l'expression de la dérivée f' de f.
- Etudier le signe de f'(x) en fonction de x.
- 3 En déduire le tableau de variation de f.

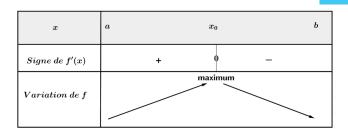
Extremum d'une fonction

Définition 1.2

Soit f une fonction définie et dérivable sur un intervalle ouvert I et soit x_0 un réel de l'intervalle I où x_0 n'est pas une borne de l'intervalle I.

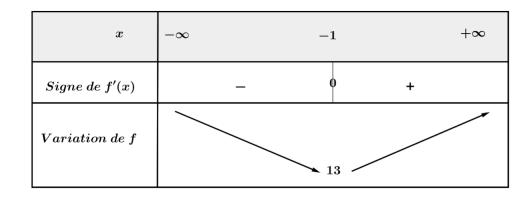
Si f' s'annule en x_0 en changeant de signe, alors $f(x_0)$ est un extremum local de f.

Signe de f'(x) $Variation \ de \ f$



Exemple

Dasn l'exemple 1, nous avions déterminer le tableau de variation de f ci dessous.



Nous observons que ici que f' s'annule en -1 en changeant de signe, alors f(-1)=13est un extremum local de f.

13 correspond précisément ici à un minimum local sur \mathbb{R} .

Des exercices supplémentaires rien que vous :)

Exercice

5

Solution vidéo ↓

- 1 Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 12x + 1$. Etudier les variations de la fonction f.
- 2 Soit f la fonction définie sur \mathbb{R} par f(x) = (3x 4)(5x 2). Etudier les variations de la fonction f.
- **3** Soit f la fonction définie sur $\left]-\infty; \frac{5}{2}\right[\cup \left] \frac{5}{2}; +\infty \right[$ par $f(x) = \frac{-4x+1}{2x-5}$. Etudier les variations de la fonction f.
- Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 5x^2 + 9x 3$. Etudier les variations de la fonction f.

Exercice 6

Exercice type devoir.

Soit f la fonction définie sur $]-\infty; 2[\,\cup\,]2; +\infty[$ par $f(x) = \frac{3x+5}{x-2}$ On considère la fonction f définie sur l'intervalle $]-2; +\infty[$ par

$$f(x) = \frac{x^2 + x - 1}{x + 2}$$

Solution vidéo ↓

et on note C_f sa courbe représentative dans un repère orthogonal du plan. On admet que la fonction f est dérivable sur l'intervalle $]-2;+\infty[$.

- **1** Étudier le signe de la fonction P définie sur \mathbb{R} par $P(x) = x^2 + 4x + 3$.
- 2 Montrer que pour tout réel x de l'intervalle $]-2;+\infty[$,

$$f'(x) = \frac{P(x)}{(x+2)^2}$$

où f' est la fonction dérivée de f.

- Étudier le signe de f'(x) sur $]-2; +\infty[$ et construire le tableau de variations de la fonction f sur $]-2; +\infty[$.
- Donner le minimum de la fonction f sur $]-2;+\infty[$ et la valeur pour laquelle il est atteint (on donnera les valeurs exactes).
- **5** Déterminer le coefficient directeur de la tangente T à la courbe C_f au point d'abscisse 2.

